Probability and Statistics are studied by most science students. Many current texts in the area are just cookbooks and, as a result, students do not know why they perform the methods they are taught, or why the methods work. The strength of this book is that it readdresses these shortcomings; by using examples, often from real-life and using real data, the authors show how the fundamentals of probabilistic and statistical theories arise intuitively. A Modern Introduction to Probability and Statistics has numerous quick exercises to give direct feedback to students. In addition there are over 350 exercises, half of which have answers, of which half have full solutions. A website gives access to the data files used in the text, and, for instructors, the remaining solutions. The only prerequisite is a first course in calculus; the text covers standard statistics and probability material, and develops beyond traditional parametric models to the Poisson process, and on to modern methods such as the bootstrap. This textbook provides a well-written first course in probability and statistics...It is a book that has been written based on the long teaching experience of the authors and I would certainly recommend it for university coursework. Short Book Reviews of the International Statistical Institute, December 2005
The Handbook of Mathematics for Engineers and Scientists covers the main fields of mathematics and focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. To accommodate different mathematical backgrounds, the preeminent authors outline the material in a simplified, schematic manner, avoiding special terminology wherever possible. Organized in ascending order of complexity, the material is divided into two parts. The first part is a coherent survey of the most important definitions, formulas, equations, methods, and theorems. It covers arithmetic, elementary and analytic geometry, algebra, differential and integral calculus, special functions, calculus of variations, and probability theory. Numerous specific examples clarify the methods for solving problems and equations. The second part provides many in-depth mathematical tables, including those of exact solutions of various types of equations. This concise, comprehensive compendium of mathematical definitions, formulas, and theorems provides the foundation for exploring scientific and technological phenomena.