This market leading text is known for its comprehensive coverage, careful and correct mathematics, outstanding exercises and self contained subject matter parts for maximum flexibility. Thoroughly updated and streamlined to reflect new developments in the field, the ninth edition of this bestselling text features modern engineering applications and the uses of technology. Kreyszig introduces engineers and computer scientists to advanced math topics as they relate to practical problems. The material is arranged into seven independent parts: ODE; Linear Algebra, Vector Calculus; Fourier Analysis and Partial Differential Equations; Complex Analysis; Numerical methods; Optimization, graphs; and Probability and Statistics.
Through previous editions, Peter O'Neil has made rigorous engineering mathematics topics accessible to thousands of students by emphasizing visuals, numerous examples, and interesting mathematical models. Now, ADVANCED ENGINEERING MATHEMATICS features revised examples and problems as well as newly added content that has been fine-tuned throughout to improve the clear flow of ideas. The computer plays a more prominent role than ever in generating computer graphics used to display concepts and problem sets. In this new edition, computational assistance in the form of a self contained Maple Primer has been included to encourage students to make use of such computational tools. The content has been reorganized into six parts and covers a wide spectrum of topics including Ordinary Differential Equations, Vectors and Linear Algebra, Systems of Differential Equations and Qualitative Methods, Vector Analysis, Fourier Analysis, Orthogonal Expansions, and Wavelets, and much more.
This innovative text was written for the one or two-semester, sophomore/junior level advanced math course for engineers. It was built from the ground up using a Computer Algebra System, offering the student opportunities to visualize and experience the math at every turn. The text has been designed to accommodate a variety of teaching styles, and varying levels on technology integration. It has a logical arrangement with many short self-contained sections, and many real-world applications of interest to engineering students. Chapter Introductions and Chapter Summaries help to make the material more accessible, and Chapter Review Exercises provides constant checks along the way.
Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students.