Guideline for Data Entry, Managing Bibliographic Record and Cite While You Write
EndNote is a bibliographic software which allows you to create a database of references which you have gathered in online searches or typed in manually.
Function

- To create and organize bibliographic references
- To collect and compile bibliographic information from various resource.
- To produce complete references according to required citation style or format.
EndNote

Manual Data Entry
Open EndNote Software and get this interface
Select ‘Create a new EndNote Library’

Click ‘Save’
Start creating new reference by clicking ‘Reference’ -- > ‘New Reference’

This is the interface where all the reference will be displayed.
Enter all the information regarding your materials.

Select your materials type.

Choose any style here.

Enter all the information regarding your materials.
If your desired style is not in the list, choose 'Select Another Style'.

A popup window will appear, choose any style eg: APA 5th.

Click 'choose'.
Fill up the information from your materials.

After all the information has been filled, click the 'close' box.
List of reference that has been entered

Check your reference type

Display your reference on what style that you choose
EndNote

Importing References From Online Databases

Science Direct
Click ‘Search’ to use Advance Search
Enter what you want to search for

Filter your search from drop down menu

Click ‘Search’
Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies

Yueming Qiu, Leonard Ortoiano, Yi David Wang

Highlights

- Technology acquired through joint design has the highest level.
- Technology acquired through purchasing production license has the lowest level.
- Technology acquired through domestic R&D has the level in between.
- A firm with related other businesses tends to have a higher level of technology.
- The influence of policies is significant for technology upgrade but not catch-up.
Tick the box of any article that you want to import its reference.

Make sure to determine the status of the article before importing the reference.

Full text access

Open access content

Full text not accessible
Click ‘Export citations’
Make sure the export format is supported by EndNote program (RIS format)

Click ‘Export’
Open using EndNote software, search for your EndNote Library that is created earlier.

Make sure the reference window is close before importing any reference.

Click 'Open'
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal</th>
<th>Ref Type</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gtiu</td>
<td>Factors influencing the technology up...</td>
<td>Energy Policy</td>
<td>Journal Article</td>
<td>http://www.science...</td>
</tr>
<tr>
<td>Uhmann</td>
<td>Development and Optimization of the...</td>
<td>Procedia CIRP</td>
<td>Journal Article</td>
<td>http://www.science...</td>
</tr>
<tr>
<td>Bislinie</td>
<td>Energy technology expert elicitation...</td>
<td>Technological F...</td>
<td>Journal Article</td>
<td>http://www.science...</td>
</tr>
</tbody>
</table>

Double click the reference to update any information.

Update only known information, example 'Year' field.
EndNote

Importing References From Online Databases

SpringerLink
Click at gear button to access the Advance Search.
Use any search option for your searching
You may also uncheck the ‘Include Preview-Only Content’ option.

Select any title that meet your needs.
Symposium: Hardware innovation and utilization

Richard A. Martin

Abstract
A tutorially structured symposium is being presented by professionals in various fields of computer technology. The symposium develops the theme of effective utilization of computer-related hardware in papers describing (a) elementary hardware logic design, (b) microcomputer and microcontroller design and applications, and (c) microprogramming techniques and applications.

Make sure the article is full text access

Click ‘Export citations’
Make sure the downloaded citation is supported by EndNote
Open using EndNote program
Open using EndNote software, search for your EndNote Library that created earlier.

Make sure the reference window is close before importing any reference.

Click ‘Open’
EndNote

Importing References From Online Databases

IEEE Explore
Click ‘Advance Search’
Enter your keyword

Filter your search

Click ‘Search’
DATE 2006 Special Session: DFM/DFY Design for Manufacturability and Yield - Influence of process variations in digital, analog and mixed-signal circuit design

Buhler, M.; Koehl, J.; Bickford, J.; Hibbeler, J.; Schlichtmann, U.; Sommer, R.; Pronath, M.; Ripp, A.
Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings
Volume: 1
Digital Object Identifier: 10.1109/DATE.2006.243763
Publication Year: 2006, Page(s): 1 - 6
Cited by: Papers (5)

Preliminary discussion of a world-wide-web based analog circuit design tool and design knowledge repository

Schiarmann, M.E.; Geiger, R.L.
Digital Object Identifier: 10.1109/MMICA.1999.833596
Publication Year: 1999, Page(s): 61 - 64
Tick the box of any article that you want to import its reference.
Click ‘Download citations’

Make sure the downloaded citation is supported by EndNote
Open using EndNote software, search for your EndNote Library that created earlier.

Make sure the reference window is closed before importing any reference.

Click ‘Open’
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Ref Type</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlarmann</td>
<td>1999</td>
<td>Preliminary discussion of a world-wide conference on the design of mixed-signal circuits</td>
<td>Design of Mixed-Signal Circuits: Conference Proc...</td>
<td>Conference Proc...</td>
<td></td>
</tr>
</tbody>
</table>
EndNote

Managing Bibliographic Records
To view all imported and manual entry reference, click 'Reference' --> 'Show All Reference'
You may view the reference type of imported and manual entry reference.

Change the reference format to which you prefer.
To export references, click 'File' --> 'Export'.

Make sure which citation format you choose before exporting the reference.
Save as type: ‘Rich Text Format (*.rtf)’

Click ‘Save’
Bistline, J. E. Energy technology expert elicitation: An application to natural gas turbine efficiencies. Technological Forecasting and Social Change(0).

Qu, Y., Ortolano, L., & David Wang, Y. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies. Energy Policy, 55(0), 305-316.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Ref Type</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhimann</td>
<td></td>
<td>Development and Optimization of the...</td>
<td>Procedia CIRP</td>
<td>Journal Article</td>
<td>http://www.scienc...</td>
</tr>
<tr>
<td>Qi et al.</td>
<td></td>
<td>Factors influencing the technology up...</td>
<td>Energy Policy</td>
<td>Journal Article</td>
<td>http://www.scienc...</td>
</tr>
<tr>
<td>Martin</td>
<td>1976</td>
<td>Symposium: Hardware innovation an...</td>
<td>Behavior Research...</td>
<td>Journal Article</td>
<td>http://dx.doi.org/10....</td>
</tr>
<tr>
<td>Lore'n</td>
<td>2004</td>
<td>Estimating fatigue limit distributions</td>
<td>International Journal...</td>
<td>Journal Article</td>
<td>http://www.scienc...</td>
</tr>
<tr>
<td>Bistline</td>
<td>1999</td>
<td>Preliminary discussion of a world-wide...</td>
<td>Technological Innovatio...</td>
<td>Journal Article</td>
<td>http://www.scienc...</td>
</tr>
<tr>
<td>Schlarman</td>
<td></td>
<td>1999 Preliminary discussion of a world-wide...</td>
<td>Design of Mixed...</td>
<td>Conference Proceedings</td>
<td></td>
</tr>
<tr>
<td>Buhler</td>
<td>2006</td>
<td>DATE 2006 Special Session: DFM/...</td>
<td>Design, Automat...</td>
<td>Conference Proceedings</td>
<td></td>
</tr>
</tbody>
</table>

Click at the reference while holding the ‘Ctrl’ button if you want to export selected reference only.
Click ‘File’ --> ‘Export’

Make sure to choose the correct style
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhmann</td>
<td></td>
<td>Development and Optimization of the</td>
</tr>
<tr>
<td>Qu</td>
<td>1976</td>
<td>Symposium Hardware</td>
</tr>
<tr>
<td>Martin</td>
<td>2004</td>
<td>Estimating fatigue</td>
</tr>
<tr>
<td>Lore'n</td>
<td>2006</td>
<td>Energy technology</td>
</tr>
<tr>
<td>Bisline</td>
<td>1999</td>
<td>Preliminary discussion</td>
</tr>
<tr>
<td>Buhler</td>
<td></td>
<td>DATE 2006 Special</td>
</tr>
</tbody>
</table>

Bisline, J. E. Energy technology expert elicitations

EndNote

Cite While You Write
Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design

Chapter 1: Introduction

The concepts of design for manufacturability and design for yield DFM/DFY are bringing together domains that co-existed mostly separated until now. Design and manufacturing process. New requirements like SoC, mixed analog/digital design and deep-submicron technologies force to a mutual integration of all levels. A major challenge coming with new deep-submicron technologies is to design and verify integrated circuits for high yield. Random and systematic defects as well as parametric process variations have a large influence on quality and yield of the designed and manufactured circuits. With further shrinking of process technology, the on-chip variation is getting worse for each technology node. For technologies larger than 180nm feature sizes, variations are mostly in a range of below 10%. Here an acceptable yield range is achieved by regular but error-prone re-shifts of the drifting process.
Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design

Chapter 1: Introduction

The concepts of design for manufacturability and design for yield DFM/DFY are bringing together domains that co-existed mostly separated until now. Circuit design, physical design and manufacturing process. New requirements like SoC, mixed analog/digital design and deep-submicron technologies force circuit design with new deep-submicron technology. Random and systematic defects on quality and yield of the design for manufacturability, in-process technology, the on-chip technologies larger than 180nm feature sizes, variations are mostly in a range of below 10%. Here an acceptable yield range is achieved by regular but error-prone re-shifts of the drifting process.
Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design

Chapter 1: Introduction

The concepts of design for manufacturability and design for yield DFM/DFY are bringing together domains that co-existed mostly separated until now. Circuit design, physical design and manufacturing processes require integration like SoC, mixed analog/digital design and deep-submicron technologies for a mutual integration of all levels. A major challenge coming with new deep-submicron technologies is to design and verify integrated circuits for high yield. Random process variations have a large influence on quality of mass produced circuits. With further shrinking of process geometries, robustness for each technology node is a must. Here an acceptable yield range is achieved by regular but error-prone re-shifts of the drifting process.
A popup window will appear

Enter title or any keyword known from your reference

Click ‘Search’

Your listed reference from your EndNote Library will appear
Select reference that you want to use

Click ‘Insert’
Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design

Chapter 1: Introduction

The concepts of design for manufacturability and design for yield DFM/DFY are bringing together domains that co-existed mostly separated until now. Circuit design, physical design and manufacturing process. [Lore'n, 2004] New requirements like SoC, mixed analog/digital design and deep-submicron technologies force the mutual integration of all levels. A major challenge coming with new deep-submicron technologies is the fact that circuit design for high yield. Random and statistical process variations have a large influence on quality and performance. With further shrinking of process technology, the impact of these variations for technologies larger than 180nm feature sizes, variations are mostly in a submicron regime. Here an acceptable yield range is achieved by regular but error-prone re-process.

Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design

Chapter 1: Introduction

The concepts of design for manufacturability and design for yield DFM/DFY are bringing together domains that co-existed mostly separated until now. Circuit design, physical design and manufacturing process. [Lore'n, 2004]. New requirements like SoC, mixed analog/digital design and deep-submicron technologies require a new level of integration of all levels. A major challenge coming with new technology is the shrinking of process steps. Random variability have a large influence on circuit performance, which in turn influences the yield. For technologies larger than 180nm feature sizes, variations are mostly in the range of below 10%. Here an acceptable yield range is achieved by regular but error-prone re-shuffles of the drifting process.

A popup ‘Format Bibliography’ will appear

Select the output style from drop down menu

Click ‘Ok’
Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design

Chapter 1: Introduction

The concepts of design for manufacturability and design for yield DFM/DFY are bringing together domains that co-existed mostly separated until now. Circuit design, physical design and manufacturing process [1]. Today's digital design and deep-submicron technologies have created a major challenge for circuit design and manufacturing process. A major challenge is the design and manufacturing circuit with high yield. Random and systematic variations have a large influence on quality and yield of the designed and manufactured circuits. With further shrinking of process technology, the on-chip variation is getting worse for each technology node. For example, for a feature size of less than 180nm, variations are mostly in the range of below 10%. The acceptable yield range is achieved by regular but error-prone re-shifting of the drifting process.

EndNote

Download EndNote Software
Login at UniMAP Portal
Click at ‘EndNote X’ link to download the application

Get the serial number for installation later
Check out our new services at libanswers.unimap.edu.my

Any inquiries, contact us at:

rujukan@unimap.edu.my
+6(04) 9885410 / +6(04) 9798601